
Introduction to Shell Scripting
Using Zsh

Rev20230812

Contents

Section 1: Basic Commands ...4

Section 2: The Anatomy of a Shell Script ..9

Section 3: Shell Expansion ..13

Section 4: Input/Output Redirection..17

Section 5: Variables ...24

Section 6: Working with Numbers..26

Section 7: Loops ..27

Section 8: Conditional Statements...33

Section 9: Functions ..42

Section 10: Troubleshooting ...51

Page 3

The guide was written using macOS Ventura version 13.4.1 which includes Zsh version 5.9 as it’s default
shell. Most of the lessons in this guide will work with bash and we will call out any lessons that are Zsh
specific.

What is Zsh?
Zsh is called Z Shell, which is an extension of Bash that has many new features and themes. Zsh was
released in 1990 by Paul Falstad. Zsh has similarities with Korn shell as well. Zsh is built on top of bash
thus it has additional features.

Starting with macOS Catalina, your Mac uses zsh as the default login shell and interactive shell. Zsh
provides the user with more flexibility by providing various features such as plug-in support, better
customization, theme support, spelling correction, etc.

Zsh is highly compatible with the Bourne shell (sh) and mostly compatible with bash, with some
differences. For more about zsh and its comprehensive command-line completion system, enter
man zsh in Terminal.

The purpose of this guide is to provide an introduction to shell scripting. No prior shell script
experience is required to follow along with this guide. We recommend using a non production Mac
computer when following along with the lessons in this guide.

NOTE: When following the lessons in this guide, do NOT copy and paste the code from this PDF.
Doing so may cause issues when running the scripts. We recommend typing out all the commands or
using the example script files for best results.

Section 1 Page 4

Introduction to Shell Scripting Using Zsh

Section 1: Basic Commands
In this lesson we will briefly go over a few basic commands.

1. Launch Terminal from /Applications/Utilities.

2. The pwd command stands for Print Working Directory. This command will show you exactly
where you are at when using the terminal. Enter the following command:

pwd

3. Press the return key. The output of the command will be listed in the terminal.

4. The ls command is short for list. This command will list items. Enter the following
command:

ls

5. The ls command has a lot of options that can be assigned to it. In our last example, we saw
a listing of the directory but not much else. Let’s get a bit more info from the ls command
by assigning the -alh option to it. Enter the following command:

ls -alh

The -alh option will show All Files, in Long Format and Human Readable. Notice you will
have files in the list that show up with a dot in front of the name. These are hidden files.

Section 1 Page 5

Introduction to Shell Scripting Using Zsh

6. The mkdir command is short for make directory. This command will make a new directory.
Enter the following command:

mkdir /Users/<yourAccount>/Desktop/Scripts

A folder named Scripts will appear on your Desktop.

7. The rmdir command is short for remove directory. This command will delete a directory.
Enter the following command:

rmdir /Users/<yourAccount>/Desktop/Scripts

The folder named Scripts will be deleted from your Desktop.

8. The cd command is short for Change Directory. This command will move you from one
directory to another directory. Enter the following command:

cd /

Then enter:

pwd

You will be at the root of your hard drive.

Section 1 Page 6

Introduction to Shell Scripting Using Zsh

9. Enter the following command:

cd ~

Then Enter:

pwd

This will bring you to the root of your Home Directory. The Tilde (~) is used as a shortcut to a
users home directory.

10. There are a variety of ways to get to a command that was previously ran. The simplest way is to
use the up arrow on the keyboard. Go ahead and press the up arrow once. This will show you the
last command you ran. If you keep pressing the up arrow, you will see all your previous commands.

11. Another way to see a command that was previously run, is to Enter the following command:

history

This will list out all of the commands that you have run on your computer. A number is assigned
to each previous command. This number can be used to call the command as well. We will
cover this in the next step.

Section 1 Page 7

Introduction to Shell Scripting Using Zsh

12. An exclamation point (!), also referred to as a bang, can be used to recall commands from
history. In our last example, the history command showed a number next to each command
in your history. Enter the following command.

!4
(NOTE: your history number will be different. Pick a number of your choosing.)

In our example, history item number 4 was the mkdir command.

13. This command will execute the command X numbers from the last command ran. Enter this:

!-4

This will run the 4th command from the last command you had in your history.

14. If you want to run the previous command, enter the following:

!!

A double exclamation point will run the previous command.

Section 1 Page 8

Introduction to Shell Scripting Using Zsh

15. The echo command is used to print items to the screen. Enter the following command:

echo This is my first echo command.

You will see “This is my first echo command” on the screen.

16. The clear command is used to clear the screen. Enter:

clear
You will now have a clear terminal screen.

NOTE: You can also clear the screen by using the keyboard shortcut: Command (⌘) +K

17. One of the most helpful commands is the man command. This command will show you the
manual page for just about every program that you use in Terminal. Enter the following
command:

man ls

This will show you the manual page for the ls command. I encourage you to view the man pages
to get familiar with all the options for the commands you will use. Enter Q to quit the man page.

This completes this lesson.

Section 2 Page 9

Introduction to Shell Scripting Using Zsh

Section 2: The Anatomy of a Shell Script
In this lesson we will go over the anatomy of creating a shell script. The following will be covered:

1. Create a folder for our scripts.
2. Choosing a text editor for writing shell scripts.
3. Shebang - The Interpreter directive.
4. Commenting your code.
5. Add code to your script
6. Saving your script.
7. Make your script executable.
8. Run your script.

1. If not already open, launch Terminal and enter the following command:

mkdir ~/Desktop/Zsh_Scripts

This will create a folder named Zsh_Scripts on your Desktop. We will store all of our scripts in this
folder for the duration of this guide.

2. There are a myriad of text editors available for creating shell scripts. The most important
thing to remember is to use a plain text editor and NOT a rich text editor when creating
your shell scripts. Rich Text editors can cause your script to not function properly as it can
interpret characters differently from plain text. We will use the nano editor built into macOS
for this guide. Navigate to the Zsh_Scripts folder on the Desktop, and create your first shell
script. Enter the following command:

cd ~/Desktop/Zsh_Scripts

Then Enter:

nano myfirstZsh.sh

This will launch the nano editor.

NOTE:
A prompt may
appear asking
you to grant
Terminal to
access your
Desktop.
Click OK.

Section 2 Page 10

Introduction to Shell Scripting Using Zsh

3. The myfirstZsh.sh will be empty. A shell script requires an interpreter directive. The
interpreter must be an absolute path to an executable program. Enter the following on the
first line of the myfirstZsh.sh:

#!/bin/zsh

This line is known as the shebang. This will tell the interpreter to run the Zsh program
located in /bin/sh.

4. A very important step in writing shell scripts is to comment the scripts. This is very helpful if
you need to revise the script down the road. A hashtag (#) is used for commenting in shell
scripts. Hashtags are ignored when a shell script is run. Go back to the myfirstZsh.sh file and
press the return key twice after the #!/bin/zsh and enter the following:

#This is my first Zsh script!

You just created your first comment.

5. Go back to the myfirstZsh.sh file and press the return key once after the #This is my first
Zsh script! and enter the following:

echo Hello World!

6. Save the script by pressing the following keys: Control and x. This will prompt you to save
the file. Enter Y for yes.

Enter Y for yes

Section 2 Page 11

Introduction to Shell Scripting Using Zsh

7. To finish saving the file, press the Return key.

8. To run a shell script, it must be executable. Enter the following command to make the shell
script executable for all users:

chmod a+x myfirstZsh.sh

9. To confirm the script is executable. Enter the following command:

ls -alh

The x shown is the file permissions and confirms that the file is executable.

Section 2 Page 12

Introduction to Shell Scripting Using Zsh

10. There are many ways to run a script. Since we are already in the directory that the script resides
in, enter the following command to run the script:

./myfirstZsh.sh

Hello World! will be echoed to the screen. Congratulations, you just created and ran your first
shell script.

NOTE: If you were not already in the location where the script resides, You would need to call
the script by specifying it’s absolute path with zsh prepending the command.

zsh /Users/< HomeFolder >/Desktop/Zsh_Scripts/myfirstZsh.sh

This completes this lesson.

Section 3 Page 13

Introduction to Shell Scripting Using Zsh

Section 3: Shell Expansion
In this lesson we will go over shell expansion. There are 8 expansions in total:

1. Brace Expansion.
2. Tilde Expansion.
3. Shell parameter and variable Expansion.
4. Command Substitution.

For more information on the items above, go to:

https://zsh.sourceforge.io/Doc/Release/Expansion.html

We will cover the following in this lesson:

1. Brace Expansion.
2. Shell parameter and variable Expansion.
3. Command Substitution.

Brace expansion is a mechanism by which arbitrary strings may be generated. Patterns to be
brace-expanded take the form of an optional PREAMBLE, followed by a series of comma-separated
strings between a pair of braces, followed by an optional POSTSCRIPT. The preamble is prefixed
to each string contained within the braces, and the postscript is then appended to each resulting
string, expanding left to right. Brace expansions may be nested. The results of each expanded
string are not sorted; left to right order is preserved.

Shell parameter and variable Expansion
The "$" character introduces parameter expansion, command substitution, or arithmetic
expansion. The parameter name or symbol to be expanded may be enclosed in braces, which are
optional but serve to protect the variable to be expanded from characters immediately following it
which could be interpreted as part of the name.

When braces are used, the matching ending brace is the first "}" not escaped by a backslash or
within a quoted string, and not within an embedded arithmetic expansion, command substitution,
or parameter expansion. The basic form of parameter expansion is "${PARAMETER}". The value
of "PARAMETER" is substituted. The braces are required when "PARAMETER" is a positional
parameter with more than one digit, or when "PARAMETER" is followed by a character that is not
to be interpreted as part of its name.

If the first character of "PARAMETER" is an exclamation point, Zsh uses the value of the variable
formed from the rest of "PARAMETER" as the name of the variable; this variable is then expanded
and that value is used in the rest of the substitution, rather than the value of "PARAMETER" itself.
This is known as indirect expansion.

Command substitution allows the output of a command to replace the command itself. Command
substitution occurs when a command is enclosed in parenthesis or back ticks. Zsh performs the
expansion by executing COMMAND and replacing the command substitution with the standard
output of the command, with any trailing newlines deleted. Embedded newlines are not deleted,
but they may be removed during word splitting. When the old-style back quoted form of
substitution is used, backslash retains its literal meaning except when followed by "$", "`", or "\".
The first back ticks not preceded by a backslash terminates the command substitution. When using
the "$ (COMMAND)" form, all characters between the parentheses make up the command; none
are treated specially.

Command substitutions may be nested. To nest when using the back quoted form, escape the
inner back ticks with backslashes. If the substitution appears within double quotes, word splitting
and file name expansion are not performed on the results.

5. Arithmetic Expansion.
6. Process Substitution.
7. Word splitting.
8. File name Expansion.

Section 3 Page 14

Introduction to Shell Scripting Using Zsh

1. If not already open, launch terminal and navigate to the Zsh_Scripts folder.

cd ~/Desktop/Zsh_Scripts/

2. Enter the following command:

nano expansion.sh

3. A blank document will open. Enter the following:
Enter on the first line: #!/bin/zsh
Press return key twice, enter: #Expansion example script
Press return key twice, enter:
#This will create multiple directories inside a directory using brace
expansion.
Press return key once, enter: mkdir -p Programming/{Java,Python,Scala}
Press return key twice, enter:
#This is an example of Shell parameter and variable expansion.
Press return key once, enter: echo $SHELL
Press return key twice, enter: #This is an example of command substitution.
Press return key once, enter: echo $(date)

4. To save the script, press the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

Section 3 Page 15

Introduction to Shell Scripting Using Zsh

5. To finish saving the file, press the Return key.

6. To run a shell script, it must be executable. Enter the following command to make the shell script
executable for all users:

chmod a+x expansion.sh

7. Since we are already in the directory that the script resides in, enter the following command to run the
script:

./expansion.sh

8. Confirm the following:
A. Inside the Zsh_Scripts folder, there is a directory named Programming. There are folders

named Java, Python, and Scala inside the Programming folder. This was done with brace
expansion.

B. The terminal shows /bin/zsh - This was done with Shell parameter and variable Expansion.
C. The terminal shows the current date and time. This was done with Command Substitution.

A

B
C

Section 3 Page 16

Introduction to Shell Scripting Using Zsh

9. Enter the following command to delete the Programing folder and it’s contents:

rm -r Programming

This completes this lesson.

Section 4 Page 17

Introduction to Shell Scripting Using Zsh

Section 4: Input/Output Redirection
In this lesson we will go over redirection.

What is redirection?
Redirection simply means capturing output from a file, command, program, script, or even code
block within a script and sending it as input to another file, command, program, or script.

There are always three default files that are open.
• stdin (the keyboard)
• stdout (the screen)
• stderr (error messages output to the screen).

The files contain numbers known as file descriptors. You can call them by their file descriptor
numbers when redirecting them. For example: 2>&1 can be used in a script to redirect stderr and
stdout to a log file.

• stdin - File Descriptor Number 0
• stdout - File Descriptor Number 1
• stderr - File Descriptor Number 2

These, and any other open files, can be redirected. We will cover the following in this lesson:
1. Redirecting Output
2. Appending redirected output
3. Redirecting error output
4. Appending Redirected error output
5. Transporting stdout and stderr through a pipe
6. Redirecting input
7. Here Documents

1. If not already open, launch terminal and navigate to the Zsh_Scripts folder.

cd ~/Desktop/Zsh_Scripts/

2. Let’s redirect some output to a file. You use the greater than sign (>) to redirect data to a
file. Enter the following command:

ls -alh > lsout.txt

3. Enter the ls command. You will see a file called lsout.txt.

Section 4 Page 18

Introduction to Shell Scripting Using Zsh

4. To view the lsout.txt file with the nano editor. Enter the following command:

nano lsout.txt

This file contains the output of the ls -alh command. Exit out of the lsout.txt file by pressing the
Control and x keys.

5. Lets append some more data to the lsout.txt file. We will use the double-greater than
sign which instruct the data to be appended to a file. Enter the following command.

echo This is appended text >> lsout.txt

6. Lets view the lsout.txt file with the nano editor. Enter the following command:

nano lsout.txt

The appended text is now part of this file. Exit out of the lsout.txt file by pressing the
Control and x keys.

Section 4 Page 19

Introduction to Shell Scripting Using Zsh

7. There are a few ways to handle stdout and stderr. The following commands will produce
different results. Enter the following commands:

ls -alh /tnt > mylogfile.txt 2>&1

This command will send the stdout and stderr output to a file called mylogfile.txt.

8. To view the mylogfile.txt file with the nano editor. Enter the following command:

nano mylogfile.txt

An error message shows up. Exit out of the mylogfile.txt file by pressing the
Control and x keys.

9. This command will append the stdout and stderr output to a file called mylogfile.txt.

ls -alh /tnt >> mylogfile.txt 2>&1

10. Lets view the mylogfile.txt file with the nano editor. Enter the following command:

nano mylogfile.txt

An error message shows up with the appended text. Exit out of the mylogfile.txt file by
pressing the Control and x keys.

Section 4 Page 20

Introduction to Shell Scripting Using Zsh

11. This command will send stdout and stderr to both the screen and to a file using a pipe for
redirection and the tee command.

ls -alh /tnt 2>&1 | tee screenAndLog.txt

12. To view the screenAndLog.txt file with the nano editor. Enter the following command:

nano screenAndLog.txt

An error message shows up. Exit out of the screenAndLog.txt file by pressing
the Control and x keys.

13. This command will append stdout and stderr to both the screen and to a file using a pipe for
redirection and the tee command.

ls -alh /tnt 2>&1 | tee >> screenAndLog.txt

14. To view the screenAndLog.txt file with the nano editor. Enter the following command:

nano screenAndLog.txt

An error message shows up. Exit out of the screenAndLog.txt file by pressing
the Control and x keys.

Section 4 Page 21

Introduction to Shell Scripting Using Zsh

15. To redirect standard input, use the more command to read the lsout.txt file as input and pipe
it to the grep command and search for all lines that contain the word "appended" in the
document. Enter the following command: (NOTE: the -i in the grep command will make the
search ignore the case)

more lsout.txt | grep -i appended

Here Documents
<<- EOF is a syntax used in a here-document. It uses I/O redirection to feed a list of commands
to an interactive program until reaching the specified delimiter, which is EOF (end-of-file).
Heredoc statements don’t have to use EOF, you can use anything you want as long as it starts
with <<-HCS and ends with HCS. We will use the cat command in this next step. The cat utility
reads files sequentially, writing them to standard output. For more info about the cat command,
read the man page on it.

16. Enter the following command:

nano heredoc.sh

17. Enter the following info into the heredoc.sh document:

#!/bin/zsh

#A script to make an HTML page

cat <<-EOF
<HTML>
<HEAD>
 <TITLE>
My First Here Document
</TITLE>
</HEAD>

<Body>
<H1>My First Here Document</H1>
</Body>
</HTML>
EOF

Section 4 Page 22

Introduction to Shell Scripting Using Zsh

18. Save the script by pressing the following keys: Control and x. This will prompt you to save
the file. Enter Y for yes.

19. To finish saving the file, press the Return key.

20. To run a shell script, it must be executable. Enter the following command to make the shell
script executable for all users:

chmod a+x heredoc.sh

Section 4 Page 23

Introduction to Shell Scripting Using Zsh

This completes this lesson.

21. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./heredoc.sh > index.html

22. Navigate to your Zsh_Scripts folder located on your Desktop and open the index.html file.
Confirm that it opens in a web browser and displays “My First Here Document”.

Section 5 Page 24

Introduction to Shell Scripting Using Zsh

Section 5: Variables
In this lesson, we will cover two types of variables. Internal variables and General Assignment
variables.

Internal or Built in variables, are variables that are set and used by Zsh. Other shells may ignore
these variables as they are NOT built into the shell.

General Assignment or Custom variables are variables that you can create when needed. These
variables are not built into Zsh and should be respected by most shells.

Variables are case sensitive and capitalized by default. Giving local variables a lowercase name is a
convention which is sometimes applied. However, you are free to use the names you want or to mix
cases. Variables can also contain digits, but a name starting with a digit is not allowed.

We will cover the following in this lesson:
• Internal Variables
• General Assignment Variables

1. If not already open, Launch Terminal and navigate to the Zsh_Scripts folder. Enter the following
command:

echo $HOME

This is an Internal variable meaning you did not set the information in it. When the echo $HOME
command is run, it tells Zsh to look at it’s internal variable for $HOME and display the output
which is the home directory of the current logged in user.

/Users/< HomeFolder >

2. Enter the following commands one by one to see the internal variables output.

echo $PWD - This will print out the current working directory to the screen.
/Users/< HomeFolder >/Desktop/Zsh_Scripts

echo $MACHTYPE - This will output the Machine info.
x86_64

echo $HOST - This will output the hostname of the computer.
HCS-MacBook-Pro.local

echo $SECONDS - This will output the number of seconds a script has been running.
16824

echo $ZSH_VERSION - This will output the version of Zsh on your computer.
5.9

echo $UID - This will output the UID of the currently logged in user.
501

Section 5 Page 25

Introduction to Shell Scripting Using Zsh

3. Now lets have a look at some General Assignment or Custom variables. Enter the following
commands one by one then use echo to see the variable output. These are simple case
variables:

Enter this in Terminal and press enter: a=50
Then enter: echo $a
The result of the echo will be 50

Enter this in the terminal and press enter: b=$a
Then enter: echo $b
The result of the echo will be 50

4. These are command substitution variables:

Enter this in the terminal and press enter: a=$(ls -alh)
Then enter: echo $a

Variables are very useful when creating shell scripts. You can setup your variables at the
beginning of a script and call them by variable name later on in your script. This makes changing
a variable in a script very easy. Just change it in one place and it will change it everywhere it’s
called in your script.

This completes this lesson.

Section 6 Page 26

Introduction to Shell Scripting Using Zsh

Section 6: Working with Numbers
We will cover the following in this lesson:

• Arithmetic Evaluation
• Floating Point Numbers

Zsh has an advantage over bash as it works with floating point numbers without the need to pipe
the output to another command like bc.

1. If not already open, Launch Terminal and navigate to the Zsh_Scripts folder. Enter the following
command:

echo $((2+2))

The output will be 4. This is called Arithmetic Expansion. Expressions must be inside double
parenthesis. Bash does not support floating point numbers so the output must be sent to the bc
program. bc is a language that supports arbitrary precision numbers with interactive executive
statements. It’s built into most *nix system.

2. Let’s work with floating point numbers. Enter the following command:

echo $((2.1+2.1))

The result is: 4.2000000000000002
Zsh handles the floating point number with no issue, however what if we wanted to trim off all of
the extra numbers after the first 2.

3. We can pipe the output of the echo command to the input of the bc command to get our
desired result. Enter the following command:

echo 2.1 + 2.1 | bc -l

The output will be 4.2

This completes this lesson.

Section 7 Page 27

Introduction to Shell Scripting Using Zsh

Section 7: Loops
In this lesson we will cover the following loop types:

• For Loops
• Until Loops
• While Loops

Loop Types explained
The for loop is a little bit different from other programming languages. Basically, it let's you iterate
over a series of words within a string. The while executes a piece of code if the control expression
is true, and only stops when it is false (or a explicit break is found within the executed code.) The
until loop is almost equal to the while loop, except that the code is executed while the control
expression evaluates to false. If you suspect that while and until are very similar you are right.

1. Lets create a for loop. If not already open, Launch Terminal and navigate to the Zsh_Scripts
folder. Enter the following command:

nano forLoops.sh

2. In the blank forLoop.sh document, enter the following:
#!/bin/zsh
for i in $(ls); do
echo item: $i
done

3. Save the script by pressing the following keys: Control and x. This will prompt you to save the file.
Enter Y for yes.

Section 7 Page 28

Introduction to Shell Scripting Using Zsh

5. Enter the following command to make the script executable for all users:

chmod a+x forLoops.sh

6. Since we are already in the directory that the script resides in, enter the following command to run the
script:

./forLoops.sh

You will see the output of the ls command formatted line by line. You just created your first for loop.

4. To finish saving the file, press the Return key.

7. Lets create an until loop. Enter the following command:

nano untilLoop.sh

Section 7 Page 29

Introduction to Shell Scripting Using Zsh

8. In the blank untilLoop.sh document, enter the following:
#!/bin/zsh
Basic until loop
counter=1
until [$counter -gt 10]
do
echo $counter
((counter++))
done
echo Until loop completed.

9. Save the script by pressing the following keys: Control and x. This will prompt you to save the file.
Enter Y for yes.

10. To finish saving the file, press the Return key.

Section 7 Page 30

Introduction to Shell Scripting Using Zsh

11. Enter the following command to make the script executable for all users:

chmod a+x untilLoop.sh

12. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./untilLoop.sh

You will see the output increment until it reaches 10 then exits. You just created your first until
loop.

13. Lets create an while loop. Enter the following command:

nano whileLoop.sh

14. In the blank whileLoop.sh document, enter the following:
#!/bin/zsh
Basic while loop
counter=1
while [$counter -le 10]
do
echo $counter
((counter++))
done
echo While loop completed.

Section 7 Page 31

Introduction to Shell Scripting Using Zsh

15. Save the script by pressing the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

16. To finish saving the file, press the Return key.

17. Enter the following command to make the script executable for all users:

chmod a+x whileLoop.sh

Section 7 Page 32

Introduction to Shell Scripting Using Zsh

This completes this lesson.

18. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./whileLoop.sh

You will see the output increment until it reaches 10 then exits. This is very similar to the until
loop script. You just created your first until loop.

Section 8 Page 33

Introduction to Shell Scripting Using Zsh

Section 8: Conditional Statements
In this lesson we will cover the following loop types:

If Statement This statement is used when there is a need to check only conditions. If the condition
founds to be true then the statement was written inside the if block will get executed.

If-Else Statement When an IF statement block gets executed and the condition is false nothing
is returned or executed. If we want the program to perform certain action after the IF statement
condition is false, we use the ELSE statement after the IF statement.

If-Elif-Else Statement If more than two conditions exist which can not be solved only by using IF-
ELSE statement then ELIF is used. Multiple ELIF conditions can be defined inside one if-else loop.

Nested If Statement This works similar to other decision-making statements such as if, else, if..else,
etc. It executes a block of code if the condition written within the if statement is true. However, in
the nested-if statement, the block of code is placed inside another if block.

Case Statement The case statement simplifies complex conditions with multiple different choices.
This statement is easier to maintain and more readable than nested if statements. The case
statement tests the input value until it finds the corresponding pattern and executes the command
linked to that input value.

Expressions used If
This is an overview of the so-called "primaries" that make up the list of commands. These primaries
are put between square brackets to indicate the test of a conditional expression

Expressions Meaning

[-a FILE] True if FILE exists.

[-b FILE] True if FILE exists and is a block-special file.

[-c FILE] True if FILE exists and is a character-special file.

[-d FILE] True if FILE exists and is a directory.

[-e FILE] True if FILE exists.

[-f FILE] True if FILE exists and is a regular file.

[-g FILE] True if FILE exists and its SGID bit is set.

[-h FILE] True if FILE exists and is a symbolic link.

[-k FILE] True if FILE exists and its sticky bit is set.

[-p FILE] True if FILE exists and is a named pipe (FIFO).

[-r FILE] True if FILE exists and is readable.

[-s FILE] True if FILE exists and has a size greater than zero.

[-t FD] True if file descriptor FD is open and refers to a terminal.

[-u FILE] True if FILE exists and its SUID (set user ID) bit is set.

[-w FILE] True if FILE exists and is writable.

[-x FILE] True if FILE exists and is executable.

[-O FILE] True if FILE exists and is owned by the effective user ID.

[-G FILE] True if FILE exists and is owned by the effective group ID.

[-L FILE] True if FILE exists and is a symbolic link.

[-N FILE] True if FILE exists and has been modified since it was last read.

Section 8 Page 34

Introduction to Shell Scripting Using Zsh

Expressions Meaning

[-S FILE] True if FILE exists and is a socket.

[FILE1 -nt FILE2] True if FILE1 has been changed more recently than FILE2, or if
FILE1 exists and FILE2 does not.

[FILE1 -ot FILE2] True if FILE1 is older than FILE2, or is FILE2 exists and FILE1 does
not.

[FILE1 -ef FILE2] True if FILE1 and FILE2 refer to the same device and inode
numbers.

[-o OPTIONNAME] True if shell option "OPTIONNAME" is enabled.

[-z STRING] True of the length if "STRING" is zero.

[-n STRING] or [STRING] True if the length of "STRING" is non-zero.

[STRING1 == STRING2] True if the strings are equal. "=" may be used instead of "==" for
strict POSIX compliance.

[STRING1 != STRING2] True if the strings are not equal.

[STRING1 < STRING2] True if "STRING1" sorts before "STRING2" lexicographically in
the current locale.

[STRING1 > STRING2] True if "STRING1" sorts after "STRING2" lexicographically in the
current locale.

[ARG1 OP ARG2] "OP" is one of -eq, -ne, -lt, -le, -gt or -ge. These arithmetic binary
operators return true if "ARG1" is equal to, not equal to, less
than, less than or equal to, greater than, or greater than or equal
to "ARG2", respectively. "ARG1" and "ARG2" are integers. See
Table Below.

Arithmetic operators are used for checking the arithmetic-based conditions such as less
than, greater than, equals to, etc.

NOTE:
[] vs. [[]]
Contrary to [, [[prevents word splitting of variable values. So, if VAR="var with
spaces", you do not need to double quote $VAR in a test - eventhough using quotes
remains a good habit. Also, [[prevents pathname expansion, so literal strings with
wildcards do not try to expand to filenames. Using [[, == and != interpret strings to the
right as shell glob patterns to be matched against the value to the left, for instance:
[["value" == val*]].

Operator Description

-eq Equal

-ge Greater Than or Equal

-gt Greater Than

-le Less Than or Equal

-lt Less Than

-ne Not Equal

Section 8 Page 35

Introduction to Shell Scripting Using Zsh

1. Lets create an If Statement. If not already open, Launch Terminal and navigate to the Zsh_Scripts
folder. Enter the following command:

nano if.sh

2. Enter the following:
#!/bin/zsh
count=100
if [$count -eq 100]
then
echo "Count is 100"
fi

3. Save the script by pressing the following keys: Control and x. This will prompt you to save the file.
Enter Y for yes.

Section 8 Page 36

Introduction to Shell Scripting Using Zsh

5. Enter the following command to make the script executable for all users:

chmod a+x if.sh

6. Since we are already in the directory that the script resides in, enter the following command to run the
script:

./if.sh

You will see the output: Count is 100 because the count variable was set to 100. You just created your
first If Statement.

4. To finish saving the file, press the Return key.

7. Lets create an If Else Statement. Enter the following command:

nano ifElse.sh

Section 8 Page 37

Introduction to Shell Scripting Using Zsh

8. Enter the following:
#!/bin/zsh
count=99
if [$count -eq 100]
then
echo "Count is 100"
else
echo "Count is not 100"
fi

9. Save the script by pressing the following keys: Control and x. This will prompt you to save the file.
Enter Y for yes.

10. To finish saving the file, press the Return key.

Section 8 Page 38

Introduction to Shell Scripting Using Zsh

11. Enter the following command to make the script executable for all users:

chmod a+x ifElse.sh

12. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./ifElse.sh

You will see the output: Count is not 100 because the count variable was set to 99. You just
created your first IfElse Statement.

13. Lets create an If-Elif-Else Statement. Enter the following command:

nano ifElifElse.sh

14. Enter the following:
#!/bin/zsh
count=99
if [$count -eq 100]
then
echo "Count is 100"
elif [$count -gt 100]
then
echo "Count is greater than 100"
else
echo "Count is not 100"
fi

Section 8 Page 39

Introduction to Shell Scripting Using Zsh

15. Save the script by pressing the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

16. To finish saving the file, press the Return key.

17. Enter the following command to make the script executable for all users:

chmod a+x ifElifElse.sh

18. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./ifElifElse.sh

You will see the output: Count is not 100 because the count variable was set to 99. You just
created your first IfElse Statement.

Section 8 Page 40

Introduction to Shell Scripting Using Zsh

19. Lets create a Nested If Statement. Enter the following command:

nano ifNest.sh

20. Enter the following:
#!/bin/zsh
count=99
if [$count -eq 100]
then
 echo "Count is 100"
else
 if [$count -gt 100]
 then
 echo "Count is greater than 100"
 else
 echo "Count is less than 100"
 fi
fi

21. Save the script by pressing the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

Section 8 Page 41

Introduction to Shell Scripting Using Zsh

22. To finish saving the file, press the Return key.

23. Enter the following command to make the script executable for all users:

chmod a+x ifNest.sh

24. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./ifNest.sh

You will see the output: Count is not 100 because the count variable was set to 99. You just
created your first Nested If Statement.

25. Lets create a Case Statement. Enter the following command:

nano case.sh

Section 8 Page 42

Introduction to Shell Scripting Using Zsh

25. Enter the following:
#!/bin/zsh
FRUIT="apple"
case "$FRUIT" in
 "apple") echo "Apple makes great computers."
 ;;
 "banana") echo "Banana is not a computer company."
 ;;
 "strawberry") echo "Strawberry ice cream is delicious."
 ;;
esac

26. Save the script by pressing the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

Section 8 Page 43

Introduction to Shell Scripting Using Zsh

This completes this lesson.

27. To finish saving the file, press the Return key.

28. Enter the following command to make the script executable for all users:

chmod a+x case.sh

29. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./case.sh

You will see the output: Apple makes great computers because the fruit variable was set to
apple. You just created your first Case Statement.

Section 9 Page 44

Introduction to Shell Scripting Using Zsh

Section 9: Functions
In this lesson we will cover the creations of functions with the following:

• Creating a function
• Using a function in a shell script
• Editing a function

Functions
As in almost any programming language, you can use functions to group pieces of code in a more
logical way or practice the divine art of recursion. Declaring a function is just a matter of writing
function my_func () { my_code }. Calling a function is just like calling another program, you just
write its name.

1. Lets create an If Statement. If not already open, Launch Terminal and navigate to the Zsh_Scripts
folder. Enter the following command:

nano mainMenu.sh

2. Enter the following:

#!/bin/zsh
main_menu (){

 # This will set and clear colors using tput.
 BLUE=$(tput setaf 4)
 GREEN=$(tput setaf 2)
 RED=$(tput setaf 5)
 NOCOLOR=$(tput sgr0)

 # This will set the menu color to Blue and setup the options in our Menu.
 echo $BLUE
 echo "Select an item from the Menu."
 echo "--"
 menu_options=(
 "Ping Localhost"
 "Show Zsh Version"
 "Show Current Working Directory"
 "Quit"
)

 # We will use the select command to build our menu with a case statement.
 select menu_option in "${menu_options[@]}"; do
 case $menu_option in
 "${menu_options[1]}")
 ping -c 3 127.0.0.1
 echo $GREEN
 echo "Successful ping of localhost"
 echo $NOCOLOR
 break
 ;;
 "${menu_options[2]}")
 zshVersion=$(zsh --version)
 echo $RED
 echo "Version: $zshVersion"
 echo $NOCOLOR
 break
 ;;
 "${menu_options[3]}")
 echo $GREEN

Section 9 Page 45

Introduction to Shell Scripting Using Zsh

 echo "This is your current working directory: $PWD"
 echo $NOCOLOR
 break
 ;;
 "${menu_options[4]}")
 echo $NOCOLOR
 exit
 ;;
 *)
 echo $RED
 echo "Please enter a number between 1 and 4"
 echo $BLUE
 ;;
 esac
 done

}
We will call our function to be used in this script.
main_menu

3. Save the script by pressing the following keys: Control and x. This will prompt you to save the file.
Enter Y for yes.

Section 9 Page 46

Introduction to Shell Scripting Using Zsh

4. To finish saving the file, press the Return key.

8. Select item 1. A ping of your localhost will begin. When completed, “Successful ping of localhost”
will be in Green. This is happening because we used the tput commands to setup our color variables.
Notice once the ping exists successfully, our command prompt changes back to Black. This is due to
the NOCOLOR variable that we configured using tput.

5. Enter the following command to make the script executable for all users:

chmod a+x mainMenu.sh

6. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./mainMenu.sh

7. You will be presented with a menu that has 4 items in Blue.

Section 9 Page 47

Introduction to Shell Scripting Using Zsh

9. Press the up arrow on the keyboard. You should see: ./mainMenu.sh Press the enter key. At the menu,
enter the number 8. Since 8 is not an item in the menu, you are greeted with a prompt to enter in a
number between 1 and 4. Enter number 4 to exit the menu. You just created your first function.

 The great thing about functions is you only have to write the code once. It can be used over and over
and can even be used by other scripts.

10. Lets create a new script and use our menu function in our new script. If not already open, Launch
Terminal and navigate to the Zsh_Scripts folder. Enter the following command:

nano callFunction.sh

11. In the blank callFunction.sh document, enter the following:

#!/bin/zsh

#This will demonstrate how to use an external function in a script.
echo "##"
echo "THIS MENU WAS GENERATED FROM AN EXTERNAL FUNCTION"
echo "##"

#We use the source command to call the mainMenu function from and external
location.

source mainMenu.sh

Section 9 Page 48

Introduction to Shell Scripting Using Zsh

12. Save the script by pressing the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

13. To finish saving the file, press the Return key.

14. Enter the following command to make the script executable for all users:

chmod a+x callFunction.sh

15. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./callFunction.sh

Section 9 Page 49

Introduction to Shell Scripting Using Zsh

16. You will be presented with the menu function that we created earlier. Select item 4 to quit. You
just created your External function script.

 Functions are easy to edit. In our mainMenu function, we had item one doing a Ping of our local
host. This is not really useful so I’d like to add a Ping Scanner to see which of our hosts are on
and offline. For this, we will use a for loop inside our case function for item 1.

17. For safe keeping, Let’s copy our mainMenu.sh function to a new file so we can edit it without
worry of destroying the original function. Enter the following command:

cp mainMenu.sh mainMenu2.sh

18. Open the mainMenu2.sh file with nano.

nano mainMenu2.sh

19. Let’s edit the function. In the variable section for color at the top, add this:

TODAY=$(date +"%m-%d-%Y")
TIME=$(date +"%H:%M:%S")

Section 9 Page 50

Introduction to Shell Scripting Using Zsh

20. In the Options section, change the name from Ping localhost to Ping Scanner.

menu_options=(
"Ping Scanner"
"Show Zsh Version"
"Show Current Working Directory"
"Quit"

21. In the Case section of the function, for option 0 change it from this:
NOTE: Change the ip range below to match what you use in your environment.

${menu_options[1]})
ping -c 3 127.0.0.1; echo $GREEN; echo "Successful ping of localhost";
echo
$NOCOLOR
break

To this:

${menu_options[1]})
echo $NOCOLOR
for i in {1..5}; do
echo "192.168.110.$i"
if ping -W 1 -c 1 192.168.110.$i > /dev/null
then
echo '\t' $GREEN" Host is Online"$NOCOLOR
else
echo '\t' $RED" Host is Offline"$NOCOLOR
fi
done
echo --
echo $BLUE"Host Scan Completed:" "Date:"$TODAY "Time:"$TIME $NOCOLOR;
exit

Section 9 Page 51

Introduction to Shell Scripting Using Zsh

22. The final function should look like this: NOTE: IP range will be based on your environment.
#!/bin/zsh
main_menu (){
#This will set and clear colors using tput.
BLUE=$(tput setaf 4)
GREEN=$(tput setaf 2)
RED=$(tput setaf 5)
NOCOLOR=$(tput sgr0)
TODAY=$(date +"%m-%d-%Y")
TIME=$(date +"%H:%M:%S")

#This will set the menu color to Blue and setup the options in our Menu.
echo $BLUE
echo "Select an item from the Menu."
echo "---"
menu_options=(
"Ping Scanner"
"Show Zsh Version"
"Show Current Working Directory"
"Quit"
)
#We will use the select command to build our menu with a case statement.
select menu_option in "${menu_options[@]}"; do
case $menu_option in
${menu_options[1]})
echo $NOCOLOR
for i in {1..5}; do
echo "192.168.23.$i"
if ping -W 1 -c 1 192.168.23.$i > /dev/null
then
echo '\t' $GREEN" Host is Online"$NOCOLOR
else
echo '\t' $RED" Host is Offline"$NOCOLOR
fi
done
echo --
echo $BLUE"Host Scan Completed:" "Date:"$TODAY "Time:"$TIME $NOCOLOR;
exit
;;
${menu_options[2]})
echo $RED; echo "You are using Zsh version: $ZSH_VERSION"; echo
$NOCOLOR
break
;;
${menu_options[3]})
echo $GREEN; echo "This is your current working directory: $PWD"; echo
$NOCOLOR
break
;;
${menu_options[4]})
echo $NOCOLOR; exit
;;
*)
echo $RED; echo "Please enter between number 1 and 4"; echo $BLUE
;;
esac done
}
#We will call our function to be used in this script.
main_menu

Section 9 Page 52

Introduction to Shell Scripting Using Zsh

You just edited a function.

This completes the lesson.

23. Save the script by pressing the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

24. To finish saving the file, press the Return key.

25. Lets run our edited function. Enter the following command:

./mainMenu2.sh

Notice that item 1 is now named Ping Scanner.

26. Enter 1. A ping scan of the subnet that you defined will begin. Once done, it will be date
and time stamped.

Section 10 Page 53

Introduction to Shell Scripting Using Zsh

Section 10: Troubleshooting
In this lesson we will cover some troubleshooting basics. When Zsh runs with the x option turned
on, it prints out every command it executes before executing it (to standard error). That is, after any
expansions have been applied. As a result, you can see exactly what's happening as each line in your
code is executed. Pay very close attention to the quoting used. Zsh uses quotes to show you exactly
which strings are passed as a single argument.

There are three ways of turning on this mode.
1. Call the script with the -x option. Example: zsh -x myscript.
2. Modify your scripts header to include -x. Example: #!/bin/zsh -x.
3. Turn on debugging in certain parts of your code. Example: #!/usr/bin/env zsh set - x.

1. If not already open, Launch Terminal and navigate to the Zsh_Scripts folder. Enter the following
command:

nano debug.sh

2. In the blank debug.sh document, enter the following:

#!/bin/zsh

#Simple debug script
echo "This is my shell info: $SHELL"
echo "The next line is my bug"
cp me.sh you.sh

3. Save the script by pressing the following keys: Control and x. This will prompt you to save the file.
Enter Y for yes.

4. To finish saving the file, press the Return key.

Section 10 Page 54

Introduction to Shell Scripting Using Zsh

7. Edit the scripts header so it always runs in debug mode. Using nano, open the debug.sh. Add the
following line to the header:

-x

8. Save the script by pressing the following keys: Control and x. This will prompt you to save the file.
Enter Y for yes.

9. To finish saving the file, press the Return key.

5. Enter the following command to make the script executable for all users:

chmod a+x debug.sh

6. Since we are already in the directory that the script resides in, enter the following command to run the
script:

zsh -x debug.sh

Each command in the script will be printed to the screen with a + sign next to it and the results of the
command. If there was an error, it will be displayed to the screen as well.

Section 10 Page 55

Introduction to Shell Scripting Using Zsh

10. Since we are already in the directory that the script resides in, enter the following command to
run the script:

./debug.sh

Again, Each command in the script will be printed to the screen with a + sign next to it and the
results of the command. If there was an error, it will be displayed to the screen as well.

11. Using nano, open the debug.sh. Remove the following line from the header:

-x

We will use set -x and set +x to debug a section of the script. When debugging starts, you will see
a + sign before each command, when debugging ends, the plus sign will be gone before each
command. This is useful when you want to debug a section of your script. Adjust your script so it
looks like the following:

#!/bin/zsh
#Simple debug script
echo "This is my shell info: $SHELL"
set -x #Activate Debugging from here with -x
echo "The next line is my bug"
cp me.sh you.sh
set +x #Deactivate bugging from here with +x echo "Debugging is
deactivated"
echo "No more plus sign"

12. Save the script by pressing the following keys: Control and x. This will prompt you to save the
file. Enter Y for yes.

13. To finish saving the file, press the Return key.

Section 10 Page 56

Introduction to Shell Scripting Using Zsh

14. Run the script with the following command:

./debug.sh

You will see the following output. Notice the + sign starts at the echo command and ends after the
set +x command is ran.

This completes the guide.

	Section 1: Basic Commands
	Section 2: The Anatomy of a Shell Script
	Section 3: Shell Expansion
	Section 4: Input/Output Redirection
	Lesson 5: Variables
	Section 6: Working with Numbers
	Section 7: Loops
	Section 8: Conditional Statements
	Section 9: Functions
	Section 10: Troubleshooting

